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Topological and geometrical properties of random fractals? 
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Received 13 December 1984 

Abstract. The underlying structure of random fractals is described in terms of two 
exponents, 5 and U. The exponent 5 is sensitive only to the topology or ‘connectedness’ 
of the fractal, whereas U depends only on the geometry of the fractal. The topological 
exponent arises from the scaling form for the distribution of paths, n,, on a finite fractal, 
where a path is defined as the shortest walk from one site to another. This path length 
distribution function is then used to derive expressions for the radius of gyration, pair 
correlation function, static structure factor and intensity of radiation scattered from percola- 
tion clusters at the gel point. From these calculations the fractal dimension is shown to 
be [/U. Finally, recent numerical results for percolation clusters, percolation backbones, 
and lattice animals are discussed. 

Random fractals, such as percolation clusters and  diffusion-limited growth aggregates, 
are currently of interest as models of equilibrium and kinetic growth. To date, however, 
much of the numerical work on fractals has focused on evaluating the fractal dimension 
of the mass alone. Unfortunately, it has already been observed that strikingly different 
objects can have the same fractal dimension; for example, in three dimensions both 
lattice animals (Isaacson and  Lubensky 1980) and  linear polymers (Flory 1953) (at 
the theta temperature) have a fractal dimension of 2. This indicates that the fractal 
dimension is only a very partial description of the structure of a random object. 

In this letter it is shown that random fractals can be more fully described in terms 
of a topological exponent, [, and a geometrical exponent, v. The topological exponent 
describes the connectivity of the fractal in terms of a set of minimal walks, and the 
geometrical exponent relates the contour length of a minimal walk to its root-mean- 
square extension. Random fractals are shown to emerge in a natural way from a 
combination of these ‘orthogonal’ properties, and  it is shown that the fractal dimension 
is just l /  v. Also, corrections to scaling for the pair correlation and scattering function 
are shown to be attributable to a surface term in a topological distribution, n l ,  which 
describes the density of minimal paths on the fractal. Comparison with numerical 
data for two-dimensional lattice animals, percolation clusters and percolation back- 
bones, all of which have markedly different fractal dimensions, reveals an  interesting 
feature: the variation in fractal dimension is one of topology alone, the geometrical 
exponent being nearly conserved in these systems. Finally, it is shown that at the 
critical dimension the geometrical exponent is f for these structures, and  this is proposed 
as a universal feature of the critical dimension. 

The fractal dimension (Mandelbrot 1977), 0, of a particle may be equivalently 
defined through the relation of the radius of gyration, R, to the mass, M ;  the dependence 
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of the pair correlation function, g ( r ) ,  on r ;  or the dependence of the static structure 
factor, S ( q ) ,  on the momentum transfer, q. These relations are 

R ~ - M ,  g ( r ) -  l / rd-D ( r<< R ) ,  S ( q ) - l l q D  (qR>>l) ,  

where d is the dimensionality of space. In lattice simulations the radius of gyration 
and the pair correlation function are the most convenient methods of determining 0, 
but in the laboratory the relation for the structure factor is finding greater use (Schaefer 
er a1 1984a, b, c). 

The topological exponent, defined by Hong et a1 (1984) can be understood by 
considering a fractal of N sites on a lattice. Define a ‘minimal’ path on this lattice 
fractal to be the shortest topological walk (smallest contour length) from one site to 
another, where in degenerate cases an arbitrary choice is made for this path. There 
are then just N( N - 1)  directed minimal paths (hereafter these are simply called paths) 
on the fractal. The path length distribution function, n,, is defined as the number of 
these paths of length 1, and the topological length of the longest path on the fractal 
(the topological diameter), L, is defined through the normalisation 

L 
C n l = N ( N - l ) .  

I 

The form of n, can be surmised by imagining that our finite fractal of N sites 
(labelled from 1 to N) is embedded in a very large ‘embedding’ fractal. For example, 
in a diffusion-limited growth model the N sites could be an early time image of the 
embedding cluster. Suppose an enumeration of all paths of length 1 emanating from 
the ith site, including those which might terminate on the embedding fractal (neglect 
of ‘surface’ effects), gives p ,  paths. The principal conjecture made here is that the 
mean number of walks per site, w = ( p # ) ,  is proportional to l‘-’, where 5 is called the 
‘topological’ exponent and the average is carried over all sites. In fact, such power-law 
behaviour has already been demonstrated for percolation clusters, percolation back- 
bones, and lattice animals (see discussion below). Multiplying w by N, the number 
of sites, gives the first-order approximation, n, = ANl‘-’, for the path length distribution 
function. 

This first-order form of n f  neglects surface effects and therefore overcounts paths. 
It is expected that overcounting becomes important when 1 becomes comparable to 
the topological diameter, L. To account for the surface we subtract from the first-order 
nl those paths which walk off the cluster. This gives 

n,=ANf5-’[1 - b ( l / L ) ]  (2) 

where the function b ( x )  has obvious limits b(0)  = 0 and b( 1 )  = 1. Scaling arguments 
presented below demonstrate the correctness of choosing I /  L as the argument of b( x). 

The geometrical exponent (Pike and Stanley 198 1 )  relates the contour length of a 
path to the root-mean-square separation of its end points. That is, suppose the ith 
and j th  sites are topologically separated by a path of length 1, and geometrically 
separated by a distance r,, = r, - r,. The ensemble of sites separated by paths of length 
1 defines the distribution P f ( r ) ,  and the mean square length ( r ; ) =  
l r’PLr) ddr/j  P f ( r )  ddr. The geometrical exponent, v, is then defined by 

( 3 )  
where a is a constant. Equation (3)  does not represent an additional conjecture but, 
as shown below, is a direct result of the assumption of power-law behaviour in n, and 

(rf)”’ = a / ”  
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the stated purpose of describing fractals. We are now ready to use (1)-(3) to develop 
expressions for the radius of gyration, the pair correlation function and the scattering 
function for random fractals. 

Lagrange’s theorem (Flory 1969) gives the radius of gyration in terms of the site-site 
vectors r i j :  

R 2  = ( 1/2N2) (r: j )  
i j  

where the averages take into account any finite flexibility of the fractal. Passing to an 
integral, and making use of the path length distribution function, gives 

R 2  = (1/2N2)a2 IoL nJ2‘ dl. (4) 

Converting sums to integrals extends the range of self-similarity to arbitrarily small 
length scales, and in this way the lattice nature of our approach vanishes. 

The pair correlation function can be calculated from a scaling form of the distribu- 
tion Pf(r). Normalised to unity, this is 

P , ( r )  = P(r/ar”)/(al’)dPo ( 5 )  

where Po = P( s) dds. Constraining the moments to be finite requires that P ( x )  decay 
faster than a power law. Using g ( r )  = N - 2  Zi Zj  P i j ( r )  and converting to an integral 
gives 

g (  r )  - N-’ joL r ~ ~ l - ” ~ P (  rial") dl. 

The structure factor can be written in terms of (exp(iq rij)), the characteristic 
function of the distribution Pij(  r ) :  

Taking the Fourier transform of ( 5 )  gives 

S ( q )  = N - 2  loL nf(qa1”)  dl  (7) 

where it is readily shown that f, the characteristic function of PI( r ) ,  depends on gal” 
alone. 

Fractals produced by gelation processes are complicated by the large degree of 
polydispersity in such systems. To interpret scattering data from such polydisperse 
solutions requires that the scattered intensity of a single cluster be averaged over the 
distribution of cluster sizes. The scattered intensity from a single particle is just 
B N 2 S N ( q )  where B is a constant which depends on the instrumental geometry, the 
solvent/fractal contrast factor and the type of radiation scattered. Let V ( N )  be the 
number of particles of N sites in the scattering volume. Then Z N V ( N )  = cv, where 
c is the concentration in sites (mass) per unit volume and U is the scattering volume. 
Define the number distribution P (  N )  = V( N ) / c u ,  normalised by Z NP( N )  = 1. In 
terms of the weight distribution W (  N )  = NP( N ) ,  the intensity is (Berne and Pecora 
1976) 
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Using (7) gives 

I ( q )  = Bcu (n , ) f (qa l " )  d l  lom 
where (n,) is the polydispersity averaged path length distribution function: 

(9) 

and  a '  is a constant. 

form for the number distribution: 
For percolation clusters near the gel point, Stauffer (1979) has introduced a scaling 

P( N )  = N-'h(eN") .  (10) 

Here e = p - p c ,  p is the conversion (fraction of filled sites), p c  is the conversion at the 
gel point, and  U and 7 are exponents which can be related to the standard critical 
exponents. In this paper, interest is restricted to the gel point, where P( N )  - N-T.  

It is instructive to derive expressions for the radius, correlation function, and 
structure factor while neglecting the surface term in (2). From (1) it is observed that 
L, the longest path length on the cluster, scales with cluster mass like 

L -  N'". (11)  

R"" - N. (12) 

The radius can be evaluated from (4) ,  with the result 

This demonstrates the fractal nature of this formulation and  identifies 51 v as the fractal 
dimension, D. The correlation function is obtained for r << R by setting the upper limit 
of (6) to infinity. The result is 

g( r )  - 1 /  Nrd-D (13) 

where, consistent with (12), D = 5/ v. 
The structure factor is conveniently divided into two universal regimes: the 'Guinier' 

regime (qR<< 1 )  and the 'Porod' regime ( q R  >> 1). In the Guinier regime the d- 
dimensional expansion of the structure factor is S ( q )  = 1 - q 2 R 2 / d  +. . . , independent 
of the fractal dimension. Furthermore, the intensity per unit concentration at small q 
is Z l c  - N (  1 - q2R2d +. . . )  and so is proportional to the particle mass. The form of 
the structure factor in the Porod regime is more interesting since here it depends 
directly on the fractal dimension. This can be seen by setting the upper limit of 
integration in (7) to infinity (the characteristic function decays quickly). This gives 

S ( q )  - v u D ,  I l c -  WID, (14% b )  
where U = qR. That I l c  is independent of N, the particle mass, is a simple consequence 
of mass conservation. But from a scaling point of view it is a consequence of n, - N. 
One can also easily demonstrate that only with nl - N will the scattering exponent be 
equal to the exponent for the radius-a necessary condition for fractals. 

For percolation clusters at the critical point, the intensity is calculated from (8) 
and (9). At the gel point, the polydispersity averaged distribution of path lengths is 

(15) ( nr)  - /(3-7)<- I 
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and the intensity is 

I / c -  I / @  (16) 

where p = D(3 - 7). Using the exponent relations D = I /uv ,  3 - r = ay and y /  v = 2 - 7 
gives p = 2 - 7, in agreement with previous results for percolation clusters at the critical 
point (Stanley 1977, Martin and Akerson 1985). 

From these results it can be concluded that an entirely consistent picture of fractals 
can be developed from a separate consideration of the topological and geometric parts 
of the problem. Further, the first-order form of nl is shown to be sufficient to obtain 
these results. We now demonstrate that the effect of the surface term is to provide 
corrections to scaling for the structure factor and pair correlation function, while 
leaving unaltered the essential fractal relations. 

The surface term, -ANIS-’b( l / L ) ,  is easily understood when applied to topologi- 
cally one-dimensional random fractals (linear polymers). Without approximation, 
nl = 2 N (  1 - I /  L )  in this case. The first term counts the number of paths of length 1 
which emanate from the N sites of a polymer embedded in an infinite chain. The 
term -2Nl/ L subtracts from this number those paths which do not terminate on the 
N sites. In agreement with ( 1  I ) ,  L = N for these fractals. In the more general case 
where 5 >  1, the functional form of the surface term is not easily computed. The 
purpose here is twofold: to demonstrate that the function b ( x )  must depend on I /  L 
alone, and to explore the consequences of this surface term. 

With the surface term the left-hand side of (1 )  becomes 

The surface term modifies the proportionality constant in L - but does not change 
the exponent. The effect on the radius is similar: the proportionality constant in 
RS’“ - N is modified by the integral t 2 Y + f - ’ b (  t )  dt. Since these prefactors are difficult 
to measure and interpret, the effect of the surface term on ( 1  1) and (12) is incon- 
sequential. 

The correlation function and the structure factor are more substantially affected 
by the surface term. Even without explicit calculation, the dilation symmetry of fractals 
implies that the surface corrected correlation function must be of the form g( r )  - 
( l /Nrd-D)[  1 - C( r /  R ) ] ,  where C( r /  R )  is a function with the limit C(0) = 0 (a more 
usual, but equivalent, scaling form is ( I /  N r d - D ) C (  r /  R )  where C ( 0 )  = 1). Indeed, 
this result can be shown directly from ( 2 )  and (6): 

That C(x)  is a function of r /  R alone is a consequence of choosing I /  L for the argument 
of b ( x ) .  This demonstrates the correctness of the scaling form of n,. 

Similar arguments apply to the structure factor. Here the expected scaling form is 
S ( q )  - ~ - ~ [ 1 -  C ’ ( u ) ] ,  where again C’(0) = 0. From (2) and (7) 

S(  q )  - U - ” [  1 - C’( U)] ,  

C’( U )  - t5-’f( t ”) b( t /  U’”) dt. I 
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A ‘correction to scaling’ for the correlation function and the structure factor can 
be computed from the small-1 behaviour of the surface term. Define the exponent A 
by the small-x limiting behaviour b(x)-xA.  Since f(t) vanishes quickly for large t, 
the small-r (large-u) form of the correlation function (structure factor) is 

g ( r ) - ( l /Nrd-D)[ l  - ( r / R I A ’ ” + .  . .I, 
S(q) -u-D( l -u-A’”+. .  .). 

So the correction to scaling is related to the geometrical exponent and a new exponent 
which characterises the small-1 behaviour of the surface term. 

Finally, consider the effect of the surface term in polydisperse systems at the gel 
point. At the gel point the correlation range becomes infinite and a very general scaling 
analysis shows that I /  Bcv = constant x q-p exactly (no correction to scaling). But 
from (18) it is clear that the surface term does contribute to the scattering from any 
given constant-N fraction of clusters. We must conclude that if our formulation is 
correct, a polydispersity average over the surface term must contribute O ( q - p )  to Z/C. 

From (9) it can be seen that 

( n , ~  = / ( 3 - ~ ) E - i  (constant‘-constant” I t’-’b( l / t )  d t )  - l ( 3 - - 7 ) E - i .  

This leads directly to the physically necessary result I /  Bcv = constant X q-’ exactly. 
The effect of polydispersity on the surface term is thus to transform the correction to 
scaling (-q-DC(qR)) into -q-+.  Again, this can be traced to the requirement that 
b(x) be a function of l / L  alone. 

We have now established that it is possible to develop a theory of the underlying 
structure of random fractals based on the assumption of separable topological and 
geometrical exponents. Although it is not clear that all fractal systems need conform 
to this decomposition, Stanley and coworkers (Hong et a1 1984, Majid et a1 1984, 
Havlin et a1 1984) have collected substantial numerical data that demonstrate this 
behaviour for lattice animals (d = 1,2,3,4, 8), percolation clusters ( d  = 2) and percola- 
tion backbones (d  = 2). But before discussing the available data, it is well to consider 
the range of the exponents. The geometrical exponent has the obvious d-independent 
upper bound v = 1. The lower bound is given by a dense packing constraint (ball of 
string) and gives v = l/d. The lower bound on 5 is 1 (obtained for topologically 
one-dimensional structures), and the upper bound is d (d-dimensional balls). In 
summary, 

1 < 5 < d  l < d v < d .  

A few trivial examples are the d-dimensional ball ( v = 1 ,5=  d )  and linear polymers 
( 5  = 1, and v -3/(d + 2 )  or 2/(d + 1) for good or theta solvents). 

Wnat about more interesting fractals? In what cases can power law behaviour be 
found for the distribution of path lengths? In a paper on random walks on D = 2 
percolation backbones, Hong et a1 (1984) described an exponent that measures the 
number of sites within a ‘chemical’ distance 1. This exponent, which appears in a 
natural way in considering transport on fractals, is just the exponent defined here. 
Using an exact enumeration algorithm for the walks, Hong er a1 found 5 = 1.44 and 
D = 1.66. This gives v = 0.87, which satisfies the requirement 0.5 < v < 1. 

In another paper using the exact enumeration method, this time on d = 2 percolation 
clusters at criticality, Majid et a1 (1984) found 5 = 1.63. Using D = 1.89 gives v = 0.86, 
essentially the result for percolation backbones. 
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Havlin er a1 (1984) studied random walks on lattice animals and found 5 =  1 , 1.33, 
1.47, 1.61, 2 and D =  1, 1.56, 2, 2.4, 4 in d = 1, 2 ,  3, 4, 8 .  From these data v is seen 
to decrease with dimension. In order of increasing d, v = 1, 0.85, 0.74, 0.67,i. Again, 
in d = 2, v is very similar to the percolation results. The difference between percolation 
clusters, percolation backbones and lattice animals seems to be primarily one of 
topological structure. 

Flory theory can be used to obtain some insight into the large dimensionality 
behaviour of the topological exponent 5. In Flory theory the free energy is expressed 
as F/ kT = ( R /  Ro)’ + u N ~ R - ~  + w N ’ R - ~ ~  +. . . where U and w are the binary and 
ternary cluster integrals, and Ro is the unperturbed radius. If u > O ,  minimisation of 
F gives D = (d,/2)( d + 2)/( d,+ 2), where d, is the critical dimension. Minimisation for 
U = 0 gives D = ( 2 d C / 3 ) ( d  + l)/(d,+ 1) .  At the critical dimension, excluded volume 
effects vanish, and the geometrical exponent assumes its random walk value o f f .  For 
u > O  this gives 5 =  d,/4 for the asymptotic value of the topological exponent. For 
example, the critical dimension of linear polymers in good solvents is 4, giving the 
obvious result 5 = 1. For branched polymers (Isaacson and Lubensky (1980) applied 
Flory analysis to this problem) the critical dimension is 8 and 5 = 2 for d 3 8. In the 
‘theta’ case where U = 0, 6 = d , / 3 .  Applied to theta polymers (d, = 3), this gives 5 = 1. 
For branched polymers in theta solvents d,  = 6, giving 5 = 2. 

From this simple analysis it is clear that the exponents 5 and v provide greater 
insight into fractal geometry than the fractal dimension alone. As a final example of 
this, Witten-Sanders (1981) diffusion-limited growth aggregates (DLAS in d = 3 are 
known to have D = 2.5,  which is the result for percolation clusters at the critical point. 
Does this mean that DLAS have the same statistical geometry as percolation clusters? 
Probably not. DLAS have the very obvious feature that they are essentially devoid of 
‘lakes’ (vacant sites bounded by the fractal); percolation clusters, on the other hand, 
exhibit a plethora of lakes. This difference may be reflected in the exponents v and 5. 

We have shown how a theory of fractals can be developed by a consideration of 
exponents and distributions associated with the ‘orthogonal’ topological and 
geometrical properties of random fractals. In terms of these exponents, respectively 
5 and v, the fractal dimension is shown to be 5/ v. Results for the radius of gyration, 
pair correlation function, static structure factor and intensity at the gel point are shown 
to be in agreement with general scaling results for fractals. Finally, numerical data 
for percolation clusters ( d  = 2 ) ,  percolation backbones ( d  = 2) and lattice animals 
( d  = 1,2,3,4,8)  amply demonstrate power-law behaviour for the topological property 
and verify the treatment given here. 

I thank Professor H E Stanley for his helpful comments in preparation of this manu- 
script. 
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